This paper discusses the design and implementation of the ‘Ike Wai Hawai‘i Groundwater Recharge Tool, an application for providing data and analyses of the impacts of land-cover and climate modifications on groundwater-recharge rates for the island of O‘ahu. This application uses simulation data based on a set of 29 land-cover types and two rainfall scenarios to provide users with real-time recharge calculations for interactively defined land-cover modifications. Two visualizations, representing the land cover for the island and the resultant groundwater-recharge rates, and a set of metrics indicating the changes to groundwater recharge for relevant areas of the map are provided to present a set of easily interpreted outcomes based on the user-defined simulations. Tools are provided to give users varying degrees of control over the granularity of data input and output, allowing for the quick production of a roughly defined simulation, or more precise land-cover models that can be exported for further analysis. Heuristics are used to provide a responsive user interface and performant integration with the database containing the full set of simulation data. This tool is designed to provide user-friendly access to the information on the impacts of land-cover and climate changes on groundwater-recharge rates needed to make data-driven decisions.